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ABSTRACT 

Let   be a (   ) graph and    ( )  *                 + be an injection. For each edge       the 

induced edge labeling    is defined as follows: 

  ( )  {

| ( )   ( )|

 
     | ( )   ( )|        

| ( )   ( )|   

 
     | ( )   ( )|        

 

Then   is called Near Skolem difference mean labeling if   ( ) are all distinct and are from *         +. A graph 

that admits a Near Skolem difference mean labeling is called a Near Skolem difference mean graph. In this 

paper, a new parameter    is introduced and verified for some graphs. 
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I. INTRODUCTION 

 

All graphs considered in this paper are finite, 

undirected and simple. The vertex set and the edge set 

of a graph   are denoted by  ( )  and  ( ) 

respectively. For standard terminology and notations, 

we follow Harary (1) and for graph labeling, we refer 

to Gallian (2). 

 

In this paper, a non-Near skolem difference mean 

graph is investigated and a new parameter is 

introduced to check whether addition of minimum 

number of vertices to   converts this non-Near 

skolem difference mean graph   into a Near skolem 

difference mean graph. The following definitions are 

used in the subsequent section: 

 

Definition 1.1: The fan graph   (   ) is obtained 

by joining all vertices of    (path of n vertices) to a 

further vertex called the center and contains (   ) 

vertices and (    ) edges. i.e.,   = (     ) . 

 

Definition 1.2: The Jewel   is the graph with vertex 

set  (  )  *                + and edge set 

 (  )  *                            +. 

Definition 1.3: An octopus graph   , (   ) can be 

constructed by joining a fan graph   (   ) to a star 

graph       by with sharing a common vertex, where 

  is any positive integer. i.e.,            . 

 

Definition 1.4: The graph   ̅̅̅̅     , which is the join 

of the complementary of    and the path graph    is 

the double fan graph and is denoted by    .  In other 

words, the double fan graphs can be considered as the 

join of two similar fan graphs at the path. 

 

II. MAIN RESULT 

 

Definition 2.1: A graph   (   )  with    vertices 

and   edges  is  said to have  Nearly skolem  

difference mean labeling if  it is  possible to label the 

vertices     with  distinct elements  ( )  from 

*                   +  in such a way that 

each edge      , is labeled as   ( )  
| ( )  ( )|

 
  if  

| ( ) ( ) |f u f v  is even and    ( )  
| ( )  ( )|  

 
  if  

| ( ) ( ) |f u f v  is odd. The resulting labels of the edges 

are distinct and are from *         +   A graph that 

admits a Near skolem difference mean labeling is 

called a Near skolem difference mean graph. 
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Definition 2.2: Let   be a non-Near skolem difference 

mean graph. Then the parameter    of a graph   is 

defined as the minimum number of isolated vertices 

to be added to  , so that the resulting graph is Near 

skolem difference mean. 

 

Theorem 2.3: V+ (Pn+K1) = n – 4, for    . 

Proof: Let Fn be the graph Pn+K1. 

Let V(  )=*            +. 

and E(   ) = *              +  *       

                                                                                     +. 

Then | (  )|      and | (  )|      . 

Suppose,    is Near skolem difference mean for    . 

Let    (  )  *               +. 

Let     (  ) such that,  ( )   ( ). 

Then    ( )   ( )      . 

These are two cases: 

Case(i) Suppose
| ( )  ( )|

 
 = 2n-1. 

This implies  ( )        ( ). 

          

       . 

Case (ii) Suppose, 
| ( )  ( )|  

 
 = 2n-1. 

This implies  ( )          ( ). 

             ( ) 

          

       . 

Thus, in both cases, for every Near skolem difference 

mean labeling of   , 

 ( )            as    . 

But by definition,  ( )      . 

This is a contradiction. 

Then the graph    is not Near skolem difference 

mean. 

Thus, in order to make    a Near skolem difference 

mean graph, at least           isolated vertices 

should to be added to         . 

Then    (     )     . 

Claim:   (  )     . 

Let   
  be the graph obtained from    by adding 

(   ) isolated vertices 

Let  (  
 )  *                      + 

and  (  
 )  *               +  *        

 +. 

Then | (  
 )|       and  | (  

 )|       

Let    (  
 )  *               + be defined as 

follows: 

 ( )    

 (  )              . 

 (  )  {
         (    )      
        (    )      

 

Let    be the induced edge labeling. Then, 

  (      )                

  (   )  {
        (    )      
       (    )      

 

Therefore, the induced edge labels are all distinct and 

are *          +. 

Hence   
  is Near Skolem Difference Mean for  

   . 

Example 2.4: The Near Skolem Difference Mean 

labeling of   
  and   

  are given in figure 1 and figure 

2 respectively. 

 
Figure 1 

 
        Figure 2 

 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)  402 

Theorem 2.5:   ( )     , for    ; where   is 

the Jewel graph. 

Proof: Let   be the Jewel graph with    . 

Let  ( )  *                 + and 

 ( )  *                          +. 

Then | ( )|      and | ( )|      . 

Suppose,   is Near skolem difference mean for 

    . 

Define    ( )  *                   +. 

Let     ( ) such that  ( )   ( ). 

Then    ( )   ( )       ,  

There are two cases: 

Case (i): Suppose,  
| ( )  ( )|

 
 = 2n+4 

Then  ( )        ( ) 

         

       

                    . 

Case (ii): Suppose, 
| ( )  ( )|  

 
 = 2n+4 

Then  ( )        ( )    

         

       

       . 

Thus, in both cases, we conclude that for any Near 

Skolem Difference Mean labeling of  . 

 ( )             as    . 

But, by definition  ( )       . 

This implies the graph   is not Near Skolem 

Difference Mean. 

Therefore, at least       (     )  isolated 

vertices should be added to the graph   to make it a 

Near skolem difference mean graph. 

Then   ( )     . 

Claim:  ( )     . 

Let   be the graph obtained from G by adding 

(   ) isolated vertices to it. 

Let  (  )  *                           

 + and 

 (  )  *                          +. 

Then | (  )|       and | (  )|      . 

Let    (  )  *               +  be defined as 

follows: 

 ( )      . 

 ( )      . 

 ( )   . 

 ( )   . 

 (  )               . 

 (  )                                 . 

Let     be the induced edge labeling of  . Then, 

  (  )      . 

  (  )      . 

  (  )      . 

  (  )      . 

  (   )                     . 

  (   )                     . 

The induced edge labeling are all distinct and are 

*          +. 

Hence, the graph      (   )   is Near Skolem 

Difference Mean for    . 

Example 2.6: The Near Skolem Difference Mean 

labeling of the Jewel graph with     and     are 

given in figure 3 and figure 4 respectively. 

 
Figure 3 

 
Figure 4 

 

Theorem 2.7:   (  )      for     where    is 

octopus graph. 

Proof: Let   be the octopus graph   . 
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For    , the graph   satisfies the condition for Near 

skolem difference mean.(     ) 

Consider the graph   for    . 

Let  ( )  *                + and 

 ( )  *                          

                                                                    +. 

Hence, | ( )|        and | ( )|       

Suppose,   is Near skolem difference mean for 

    . 

Define a labeling    ( )  *               + 

Let     ( ) such that  ( )   ( ). 

Then,    ( )   ( )       provided neither of 

them equals    or     . 

There are two cases: 

Case(i): Suppose, 
| ( )  ( )|

 
      

This implies | ( )   ( )|      . 

 ( )        ( ) 

        

      

Case(ii): Suppose, 
| ( )  ( )|

 
      

Then | ( )   ( )|         

 ( )        ( ) 

`                  

                

Thus, in both cases, we concluded that for any Near 

skolem difference mean labeling of     ,  

 ( )             as     

But by definition,  ( )      . 

 

This implies that the graph    is not Near skolem 

difference mean graph, therefore, in order to make   

a Near skolem difference mean graphs we have to add 

at least           vertices to  . 

Then   ( )     . 

Claim:   ( )     . 

Let    be the graph obtained by adding (   ) 

isolated vertices to  . 

Let  (  )  *                    

                                                                  + 

 and  (  )  *                          

                                                                        +. 

Then, | (  )|       and | (  )|       

Let    (  )  *               + be defined as 

follows: 

There are two cases: 

 

Case(i) When   is odd: 

 ( )    

 (     )                    
   

 
. 

 (   )                               
   

 
. 

 (  )                                    

 (  )       

 (  )                           . 

Case(ii): When   is even: 

 ( )    

 (     )                         
   

 
. 

 (   )                                     
 

 
. 

(  )  {
         

 

 

     
   

 
    

. 

 (  )                                . 

Let    be the induced edge labeling. Then, 

Case (i) When   is odd: 

  (      )                           

  (      )                 
   

 
/ 

  (    )                             
   

 
. 

  (   )                                       . 

 (   )                                   

Case(ii) When   is even: 

  (      )                            . 

  (      )                  
   

 
. 

  (    )                              
 

 
. 

  (   )  {
       

 

 

     
   

 
    

. 

The induced edge labels are all distinct and are 

*          +. 

Hence    admits Near skolem difference mean 

labeling. 

Example 2.8: The Near Skolem Difference Mean 

labeling of    (   )   and    (   )   are 

given fig 5 and fig 6 respectively. 
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Figure 5 

    

 
  Figure 6 

 

Theorem 2.9:   (   )       for    . 

Proof: Let   be the graph     with    . 

Let  ( )  *              + and 

 ( )  *                             +. 

Then | ( )|       and | ( )|       

Suppose,   is Near Skolem Difference Mean For 

   . 

Let    ( )  *               +. 

Let     ( ) such that  ( )   ( ). 

Then    ( )   ( )      . 

There are two cases: 

Case(i): Suppose, 
| ( )  ( )|

 
      

Then,  ( )        (  ). 

               

             

            . 

Case (ii): Suppose,  
| ( )  ( )|  

 
      

Then,  ( )   ( )         

Therefore        ( )        ( ) 

          

        

        

Thus, in both cases, for any Near Skolem Difference 

Mean labeling of  ,  

 ( )            as    . 

But, by definition  ( )      . 

This implies that the graph   is not Near Skolem 

Difference Mean 

Therefore at least (    )  (    )  isolated 

vertices should be added to the graph   to make it a 

Near skolem difference mean graph. 

Then   ( )      . 

 

Claim:   ( )      . 

Let    be the graph obtained from   by adding 

(    ) isolated vertices. 

Let  (  )  *                       

                                                                 +  and 

 ( )  *                            

                                                                             +. 

Then | ( )|        and  | ( )|       

Let    (  )  *               + be defined as 

follows: 

 

Case(i): When n is odd: 

 ( )    

 (     )                      
   

 
. 

 (   )              
   

 
. 

 ( )       

 (  )                             

 

Case(ii) When n is even: 

 ( )    

 (     )                   
   

 
. 

 (   )                               
 

 
. 

 ( )       

 (  )                                     . 

Let    be the induced edge labeling. Then, 

 

Case(i) When n is odd: 

  (      )                           
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  (      )                        
   

 
. 

  (    )                    
   

 
. 

  (      )                     
   

 
. 

  (    )                      
   

 
. 

 

Case (ii) When n is even: 

  (      )                            . 

  (      )                   
   

 
. 

  (    )                               
   

 
. 

  (      )  (    )         
   

 
. 

  (    )                         
 

 
. 

The induced edge labels are all distinct and are 

*          +. 

Hence,    is Near skolem difference mean. 

 

Example 2.8: The Near skolem difference mean of 

         and          are given in figure 7 and 

figure 8 respectively. 

 

III. CONCLUSION 

 

In this paper, we investigated a non-Near skolem 

difference mean graph and introduced a new 

parameter to check whether addition of minimum 

number of vertices to   converts a non-Near skolem 

difference mean graph   into a Near skolem 

difference mean graph. We have planned to 

investigate this property for some special cases of 

graphs in our next paper. 
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Figure 7 

 
Figure 8 

 


